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Abstract

The local geometric properties of a nonlinear control system defined
by vector fields Ex .... , EM are determined by the algebraic properties

of the iterated Lie brackets of the Ej 's. Let R -- C°°(R N) and let

0

D=_z, l<p<_N.

Assume that the vector fields Ej are written in terms of the basis D r
with coefficients from R:

N

wherea eR, 1_<i_<M.
/_---1

In general, when expressions involving the noncommuting Ej's are

written in terms of the commuting D r's, there is cancellation. In this
paper we examine the problem of rewriting expressions involving the

Ej's in terms of the D_'s in such a way as to handle efficiently any

cancellation occurring due to the commuting of the D r's. Roughly

speaking, we introduce a data structure which allows us to organize

the computation to take advantage of the symmetries in the expression
and reduce the operation count.

1 Introduction

Given two vector fields E, and E2 on R N, let [E2, EI] = E2E1 - E1E2

denote their Lie bracket. Since at least the late 1960%, the local geometric
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properties of the nonlinear control system

M

z(0) = z ° _ R N

have been studied by the algebraic properties of the iterated Lie brackets

1 <_il,...,ih _<M

of the vector fields El, ..., EM and the series and algebras they generate.

See, for example, [2] and [3]. Here t -, ul(t),..., t --. uM(t) are controls.

This paper is concerned with algorithms for the explicit symbolic com-

putation of iterated Lie brackets and series built from them. In practice, the

vector fields Ej will be written in terms of a basis D1, ..., D/v for vector
fields on R N. For example, if we let R = C°°(R N) and use the basis

8

Di=_zi, i=l,...,N,

we can express any smooth vector field on R N as a sum

N

= aj Du, whereaj E R, I _ j _ M. (1)

To rewritethe expression

p -- E3 E2 E1 -- E3 El E2 - E2 E1 E3 + El E2 E3 (2)

in terms ofthe basisD_, by naivelysubstitutingthe sum (I)foreach occur-

renceof Ej yields24N 3 terms. Because of the symmetry ofp, the resulting

expressionsimplifiesto yield6N 3 terms. In § 5 of thispaper, we givean

algorithm which computes preciselythe 6N s in the simplifiedexpression,

without the necessityof computing the other 18N 3 terms.

The basic idea is to map expressions p involving the vector fields Ej

into expressions involving labeled trees. A multiplication on trees is de-

fined corresponding to the composition of vector fields. There is also a map

from labeled trees into expressions involving the vector fields Du. The com-

position of these two maps corresponds to the substitution (1), but does

not involve the computation of terms which cancel in the end due to the

symmetry of the expression p.
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The paper is organized as follows: § 2 contains some algebraic prelim-

inaries and a statement of the theorem. Section 3 contains preliminaries

about trees, including the definition of the multiplication. Section 4 defines

the map from expressions p to trees and _ 5 defines the map from trees to

expressions involving the vector fields D r. Section 6 contains the proof the
main theorem.

This is a revision of the Technical Report [1].
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2 Derivations

The example above involving the expression (2) concerned vector fields with

coefficients in the ring R of C °O functions on R N. This paper considers the

vector fields E i to be derivations of the ring R and considers expressions p

to be elements in the free associative algebra generated by the symbols El,

• .., EM.

More generally, let R be a commutative ring with a unit element. A

derivation of R is a map D of R to itself satisfying

D(a + b) = D(a) + D(b)

D(ab) = aD(b)+ bD(a) for all a,b 6 R.

Let D1,..., DN be commuting derivations of R; that is

DiDia=DjDia, for allaER, l<__i,j<_N.

Suppose that we are also given derivations El,..., EM of R which can be

expressed as R-linear combinations of the former derivations; that is

N

Ei E= aj Dr, where aj E R, I<_j<_M.

Let K denote the subring of constants of R

Dla = O,...,DNa = O, for all a E K,



and let

K<EI,...,EM>

denote the free associative K-algebra in the symbols E1,...,EM. Note

that elements p of the free associative algebra may be thought of as a higher

order derivation of R generated by the El,. •., EM. Let Diff(D1,..., D/v; R)

denote the space of formal linear differential operators with coefficients from

R; that is Diff(Dl,..., DN; R) consists of all formal expressions

N N

L-_ E at_ID#l + E
/_1----1 DI tD2 =1

, , .

a_,l ,_2 D_ D.I

N

a_l,...,_ D_. • • D#:,
D1 ,...dJk --1

where a_l,aul,u2,...,a_l .....uk E R. We say that L E Diff(D1,...,D/v;R)

and L I E Diff(D1,..., DN;R) agree if

L(a) = if(a), for all a E R.

Fix an element p E K<E1,..., EM> and suppose that p contains i terms,
each of which is homogeneous of degree m. If we make the substitution

N

Ej E #= aj D_, where a) E R,

in the expression p, and use the fact that D1,...,DIv are derivations of

R, we get a differential operator in Diff(D1,..., DN; R). It is easy to see

that before any cancellation this differential operator contains Ira! N m terms

involving D1,..., DN.
In this paper we ask whether we can find an operator L in Diff(D1,

• .., DIv; R) which agrees with this differential operator but requires fewer
operations involving the derivations D1,..., D/v. We show that such an L

does indeed exist in case p has a certain symmetry, which we call a symmetry

decomposition. In § 6 we give the exact definitions and prove the following

theorem.

Theorem 2.1 Fiz an expression p E K<EI,...,EM> which is homoge-

neous of degree m. Let X(P) E Diff( D1,...,DN; R) denote the differential

operator obtained by the substitution

N

Ej _ # where "= aj Dr, aj E R, 1 < j < M.
#=1
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Expression p IX(P)[ ILl

E2E1 - E1 E2 4N 2 2N 2

E3F-_E, + E3E, E2 12N 3 6N 3

E3F-_EI - E3EIE2 - E2E_E3 + E1F-_E3 24N 3 6N 3

Ix(p)l- IL(
2N 2

6N 3

18N 3

Table 1: Some expressions and the resulting cancellations.

Assume that p has a symmetry decomposition. Then there ezists a differ-

ential operator L such that (i) L involves c N m fewer occurrences of terms

containing D,,...,DN than does the naive computation of X(P); (ii) the

higher order derivations X(P) and L agree. Here c is a constant depending

upon the symmetry decomposition.

We end this section with two remarks. First, it is important to note that

the algorithm we give in § 6 does not require the explicit identification of

the symmetry decomposition; rather, if such a symmetry decomposition is

present the differential operator L prQduced by the algorithm will contain

fewer terms than the differential operator X(P).

Second, it is quite common for expressions in the Ej's to involve cancella-
tion. Table 2 details the reduction in the number of terms for three different

expressions. The last column lists the number of terms which either cancel

or combine: these terms need not be computed. We hope to return in a

later paper to the classification of those expressions in Et,...,EM which

result in cancellation or combination when they are written in terms of the

D1,...,DN. In this paper we simply point out that Lie brackets are ex-

pessions of this type and that is easy to write down other such expressions.

3 Trees

In this section we describe a data structure that is useful for computations

involving higher order derivations. By a tree we always mean a rooted, finite

tree. We define the set Hm of heap-ordered trees or heaps on m nodes to be

the set of all trees h consisting of rn -t- I nodes together with a levy map

_::nodes h ----*{0,I,...,m}

satisfying



I. t:isbijective;

2. v a childof w impliesto(v)> t:(w),where v,w E nodes h.

From now on we use themap tctoidentifya node with itskeyj E {0,...,m}.

The followingdefinitionand notationwillbe used throughout the paper.

Let El,...,EM be M arbitrarysymbols. Given a heap h E Hm, let

hCE.,,,..., E_.,)

denote the labeled heap where the node j carries the label

E.v# E {E1,...,EM}, l < j <_ m.

Denote the set of all such labeled heaps by

LH,, = LH_(E_,..., EM)

and put

LH = LH(E],...,EM)= [..J LHm(E,,...,EM).
m_O

m

We say that h E LH(E1,..., EM) is homogeneous of degree m in case h E

LHm(E1, . .. ,EM).

We now describe a multiplication on labeled heaps. Let

O(LH(E1,..., EM))

denote the vector space over K whose basis consists of labeled heaps h in

LH(E1,.. ., EM). The product

h2 .hl E O(LH(E1,. ..,EM))

of two labeled heaps

hl(E.vl,...,E.y_) _: LH,,,I(E1,...,Eta)

hz(En],...,E, Tra_) E LHraa(E1,...,E_)

is defined as follows:

Step 1. Recall that each node of heap h2 has a name O,1,..., ms and each

node of heap hi has a name O,1,..., ml. Rename the names of the

nodes of heap 2 as follows:

old name 1 2 ... ray

new name ml+l m1+2 -.. rnl+m2

old label Em E,_ ...

new label E,n E,n ... F__,,_

Keep the names and labels of hi the same.



Step 2. Delete the root of h2. This produces several subtrees tl,..., tl with

roots q,..., ct. Write this as

deleteroot h2 = {tl,... ,tt}.

Step 3. Choose I nodes of hi, allowing repetition; that is, choose nl, ...,

ni E (nodes hi) I.

Step 4. Form the new tree obtained by linking each root cj to the node ni,

for j = 1,... ,l. This is not merely a tree but also a heap, denoted

link(t1,..., tt; nt,. ••, at).

Step 5. Sum over all possible choices of nodes nl,..., nl in Step 3.

defines the product of the labeled heaps hi and h_:

h2" hi = _ link(tl,...,tt;nl,...,nl),

nl,..., ate(nodes hi) _

This

where dehteroot h2 = {tl,... ;tl}.

Step 6. Finally, extend the product to all of O(LH(E1,...,EM)) by K-

linearity.

We call the space O(LH(EI,...,EM)) the space of orchards. We con-

elude this section by showing that the space of orchards is a K-algebra.

Lemma 3.1 The space of orchards O(LH(E1,..., EM)) is a K-algebra.

Proof. We need only show that the product of labeled heaps is associative.

Recall that a heap is characterized by a table listing the parents of each

node. For example
node parent

0 e
1 0

2 0

3 1

4 3

5 2

is an element of/'/5. Notice that one of the nodes (the root) does not have

a parent: this is denoted with an 0.



node

0

1

ml

parent
0

(root) 0

ml+l *

m 1 -[- rn2 •

(root) 0

ml + m2 + 1 •

ml + rn2 + m3 *

Figure 1: The labeled heaps in hs. h3 • hi.

Let hj E/'/._, for j = 1,2,3. The product

h3. (h2. hi)

contains the heaps of Figure 1. Figure 1 uses a number of conventions which

we now describe. We use a dashed line to indicate which heaps the nodes

belonged to before the product was formed. We say that all the nodes above

the first dashed line belong to the first layer; that all the nodes between the

two dashed lines belong to the second layer, etc. For example all nodes

from the third layer were originally elements of hs. If a node is enclosed in

parentheses, that indicates that it was a node of one of the heaps comprising

the product, but was deleted during the formation of the product. As already

remarked, a 0 indicates that a node has no parent. Finally a * is used to

indicate the name of any node higher up in the table. For example the first

table says that node 3 is the parent of node 4. With this notation we could

replace the 3 with a *, since 3 occurs above 4 in the first column of the table.
We will show that

h3" (h2" hi) -- (h3" h2)" hi.

Given a term h E h3 " (h2 • hi), we will show that h E (h3 ' h2) • hi also.

Notice that the table consists of three layers, corresponding to the three



heaps hi,h2, h3, and multiplication of heaps simply consists of replacing

any * which is a 0 with the names of all the nodes in the layer(s) above it in

the table and forming the corresponding heaps. For example, in computing

h3. (h2. hi), the *'s in h3 which are 0 are replaced with the names of nodes

in the two layers above. If the node is in the segment immediately above

(corresponding to h2), then it is clear that such a heap is formed when

computing (h3 • h2). hi. On the other hand if the node is in the segment

corresponding to hi, then this heap does not correspond to any term in the

sum h3.h2. In this case the * can first be replaced by O, corresponding to the

root of h2, and then replaced by the proper node from hi when computing

(h3 • h_) • hi. We have shown that the product is associative. |

4 From expressions to orchards

In this section we show how computational problems involving higher order

derivations can be translated into problems involving orchards, by defining

a map

_b : K<E1,..., EM> ----* O(LH(EI,..., EM)).

We begin by defining ¢ on monomials p E K<EI,...,EM> of the form

Era, ... E- n . Put

¢k(E.v,n .. . E._l ) -- _ h(Em,...,E'v,,).

hELH, n (El, • •., EM)

Next extend the map ¢ to all of K<EI,..., EM> by K-linearity. Recall that

h(E.._,..., E.v,,,) denotes the labeled heap with node j labeled with E_j.

Lemma 4.1

G h'= $ anaCh(m, )
h'EHm hEHm-I _,Enodes h

where attach(m, v) is the heap which arises when the node with name m is

attached to node v of a heap in Hm-l.

Proof. Given a heap h _ E Hm, we obtain a heap h E Hrn-1 by removing

the node labeled m. Since the heaps h E Hm-x are distinct, so are the heaps

we obtain by attaching the node labeled m to a node v of h. |

Theorem 4.1 The map _k is a K-algebra homomorphism.



Proof. Let 7 = (71,... ,7-_) and _ = (_1,-.. ,6m2) and define

E_ = E_., ... E._, E_ = E_._ ... E_,.

It is clear that

¢(E_ + E,) = ¢(E,) + _(E,).

We need only prove that

¢(E., . E,) = _,(E_). ¢(E,).

We do this by induction on the length of the multi-index 7. If ml = 1,
the assertion follows from Lemma 4.1. Assume the assertion is true for

rn = 1,...,ml. We compute

¢(E_). ¢(E,)

showing that the assertion holds for m = ml + 1. II

5 From orchards to differential operators

In this section we define a map

_l, : O(LH(E_,..., EM)) _ Diff(D_,..., DN; R).

We do this in several steps.

Step 1. Let h E LH, n(Eh..., EM) and let k E nodes h, and suppose that

/,...,l ! are the children of k. Fix Pt,.-.,Pe with

0 __._t,... ,#t, < N

and define

Rh(k; t-,t,... ,m') = D_,l...D_,t,a.r_ if k is not the root

= Dm...Dm, if k is the root .

We abbreviate this to R(k).
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Step 2. Define

¢(h) = E
Pl,... ,Pro

R(m)... R(1)R(0).

Step 3. Extend ¢ to all O(LH(EI,..., EM)) by K-linearity.

Lemma 5.1 Suppose p E K<E1,...,EM> and

X(P) E Diff_Dl,... , DN; R)

is the corresponding derivation defined bl the substitution

N

= "D_,, "Ej _"_aj aj ER, I<j<M.
_=1

Then

x(p)(,) = (¢ o÷(r))(a).

Proo£ We need only prove the lemma when p is a monomial. Let

p=

We proceed by induction on m. In the case m = 1,

13

)

and

¢( E a._ Din,
i_ #I =I

I.
required.

Amume the lemma holds for m _ = 1,..., m - I. Then we c|_m that

N N N

( _ a"'D.r,._,,_,,w_ a.r.-_"'-'D_,,__),,.(_,_ a_Dm)(a),
I.Jm ----. 1 Pm--1----1 pl----1

which is X(p)(a), is equal to

N

( _ a.r_D.,,,)(¢ (_

_,_=I heLHm-l(El,... ,EM)

h( E.rl, . . . , E_m_l))(a)

II



wu

+

_"= heLHrn-I (El,. • •, EM)

_ a_D_,(R,(m - 1) •. • R,(0))(a)

heLH_-l(El, . . . , EM)

___ ___ a._,,_(D_,,,,R,(m-I))•••Rh(O))(a)

#" heLH_-I(EI,..., EM)

_ a_Rh(m - l)...(D_,,_Rh(O))(a)

_'' heLH,_-l(E1,. . . , EM)

R,,Cm)... Rh,C0)Ca)
h'ELHm(E_,.. ., EM)

Here h' E LH, n(E1,..., EM) is obtained from h E LHm-I(E:,..., EM) by

attaching the node labeled m to each node v of h', as in Lemma 3.1. |

The map ¢ from orchards to Diff(Di, ..., DN; R) is not injective. This is

because the derivations Di commute. We conclude this section by describing

some elements of the kernel. This requires some additional notation. Let

LTm(EI,..., EM) denote the set of all trees consisting of m+ 1 nodes labeled

with the symbols El, ..., EM. As in § 3, let

LT(EI,..., EM) -- U LT_,(EI,...,EM)
m>O

and let O(L_E1,..., EM)) denote the correpsonding orchard. Let

p: O(LH(E1,..., EM)) ----* O(LT(EI,..., EM)),

denote the natural map which simply sends a labeled heap-ordered tree to

the labeled tree obtained by ignoring the heap-ordering.

Lemma 5.2 Let h,h r E LH,,_(EI,...,EM) be two labeled heaps wit_ the

p ope y p(h)= p(h'). The. ¢(h) = ¢(hr).

Proof. We use the notation introduced at the beginning of the section and

write

¢(h(E.vl,...,E._,n) ) = _R(m;pl,...,I_,_)...R(0;p_,...,;J,_)

d,,(h'(E,71,...,E,,n) ) -- _R_rn;ul,...,_,,,_)...R(0;Lq,...,_,,a).
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Recall that if a node k has children !,..., i', then

= D.,...

Observe that the heap names of the nodes simply provide dummy in-

dicies--/Jl,...,p,,, for h and t_, ..., u,, for h'--which are used to write

out the differential operators in Diff(D,,...,DN;R) corresponding to the

heaps h and h'. Therefore if the underlying labeled trees are the same,

then the differential operators in Diff(D1,..., DN; R) will be equal; that is

p(h) = p(h') implies _(h) = ¢(h') as asserted. |

6 Symmetries of orchards

Let o" E O(LH,,(E1,..., EM)) be an orchard on labeled heaps which are

homogeneous of degree m. We say that tr has a s_rnmetry decomposition in
case

1. cr - O'o+ a'l;

2. p(-0) = 0.

In this section, we prove our main theorem by showing how symmetry de-

compositions can be used to reduce the operation counts of computations

involving higher order derivations.

Consider an expression involving higher order derivations p in K<E1,

• .., EM>. The substitution (1) produces a differential operator X(P) in

Diff(D1, ..., DN; R). Because of the symmetry of the expression p and the

commuting of the D,'s, the naive computation of X(P) often involves some

cancellation. It makes sense, therefore, to ask whether there is an algorithm

to compute a differential operator L E Diff(D1,...,DN;R), which agrees

with X(P) and which does not require the computation of terms which cancel

in the end. We will show that this is the case under the assumption that

there is a symmetry decomposition of the corresponding orchard.

To state the theorem requires a final definition. If the orchard _ can be
written

_=_"_r(h)h, where_(h) EK, andhELHm(E1,...,EM),
h

then let [crl denote the number of heaps h such that the corresponding

coefficient a(h) is nonzero.
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Theorem 6.1 Fiz an ezpression p E K<EI,...,EM> which is homoge-

neous of degree m and let

= ¢(p) • O(LH, n(E,,..., EM))

be the corresponding orchard. Let X(P) E Diff(D1,..., DN; R) be the differ-

ential operator obtained by the sebstitution

N

= aiD., aj ER, I<_j<_M.
p=l

Assume that a = _o + or* is a symmetry decomposition of a and let L =

¢(_,). Then (i) L involves
I_olN '_

fewer occurrences of terms containin9 D_,..., Dn than does X(P) and (ii)
the higher order derivations X(P) and L agree.

Proo£ All the work has already been done. Since

a" -" _ro'+ o'1

is a symmetry decomposition, we have p(ao) = 0. Hence by Lemma 5.2,

¢(ao) = 0, and there will be [aoi N m fewer occurrences of terms containing

D1,..., DN. By Lemma 5.1 X(P) and L agree. This proves the theorem. II

Theorem 1.1 is an immediate corollary of this theorem.

7 Example

In this section we present a simple example of a computation of a third order
derivation in terms of orchards. Fix three derivations

N

= aj D_,
p=l

#
where aj E R, I<_j<_M, j = 1,2,3.

Consider a higher order derivation of the form

p = E3E2E1 - E3E1E2 - E2E1E3 + EIE2E3.

The naive computation of X(P) requires computing 24N 3 terms of the form

described in Table 2.

14



No. ofterms Form of terms

8N _ "coeff.D m

12N 3 coeff.D._D m

4N 3 coeff.D_3 D.2 D m

Table 2: Naive computation of X(P).

No. ofterms Form of terms

2N 3 coeff.D m

12N 3 coeff.D_2 D m

4N 3 coeff. D.3 Du_ D m

Table 3: Terms in the computation of X(P) which cancel.

The orchard _ = @(p) contains24 labeledheaps,sixforeach of the four

terms ofp. For example, the six labeledheaps correspondingto the first

term aregivenin Figure2. The orchard a has the symmetry decomposition

a0 + al,where the labeledheaps correspondingto al aregiven in Figure 3.

The orchard erothereforecontains the remaining 18 labeledheaps of a.

An example of the cancellationof labeledheaps isgivenin Figure 4. The

differentialoperator L = ¢(al) isequal to

E /_3 P2 DIa3 (O.3a 2 )(D.,a, )Dm -_, _,3 .2 ma3 (D._al )(Du2a2 )Din

P3 P2 Pl
-_a 2 (O..a I )(D..a, )Dm + _ " " ma, (D..a. )(D..a 3 )Dm

_3 al (D.,D.,a2 )Din,u 3 u 2 _,up3up2u 1

and contains18N 3 fewer terms of the form indicatedinTable 3 than does

the naivecomputation ofX(P).
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Figure 2: The labeled heaps ¢(E3E2E1).
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Figure 3: The labeled heaps of o'1.
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